Comparison of Daubechies wavelets for Hurst parameter estimation

نویسندگان

  • Cebrail ÇİFTLİKLİ
  • Ali GEZER
چکیده

Time scale dependence on the working nature of wavelet analysis makes it a valuable tool for Hurst parameter estimation. Similar to other wavelet-based signal processing applications, the selection of a particular wavelet type and vanishing moment in wavelet based Hurst estimation is a challenging problem. In this paper, we investigate the best Daubechies wavelet in wavelet based Hurst estimation for an exact self similar process, fractional Gaussian noise and how Daubechies vanishingmoment affects the Hurst estimation accuracy. Daubechies wavelets are preferred in analysis because increasing vanishing moment does not cause excessive increase of time support of Daubechies wavelets. Thus, limited time support of wavelets reduces the border effects. Results show that Daubechies wavelets with one vanishing moment (Daubechies 1) gives the best estimation result for short range dependent fractional Gaussian noise. Daubechies 2 is the best preference for long range dependent fractional Gaussian noise.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Estimation of Hurst Scaling Exponent through Discrete Wavelets

We study the scaling behavior of the fluctuations, as extracted through wavelet coefficients based on discrete wavelets. The analysis is carried out on a variety of physical data sets, as well as Gaussian white noise and binomial multi-fractal model time series and the results are compared with continuous wavelet based average wavelet coefficient method. It is found that high-pass coefficients ...

متن کامل

Application of Daubechies wavelets for solving Kuramoto-Sivashinsky‎ type equations

We show how Daubechies wavelets are used to solve Kuramoto-Sivashinsky type equations with periodic boundary condition‎. ‎Wavelet bases are used for numerical solution of the Kuramoto-Sivashinsky type equations by Galerkin method‎. ‎The numerical results in comparison with the exact solution prove the efficiency and accuracy of our method‎.    

متن کامل

Fast Self-Similar Teletraffic Generation Based on FGN and Inverse DWT∗

It is generally accepted that self-similar (or fractal) processes may provide better models of teletraffic in modern computer networks than Poisson processes. Thus, an important requirement for conducting simulation studies of telecommunication networks is the ability to generate long synthetic stochastic selfsimilar sequences. A new generator of pseudo-random self-similar sequences, based on t...

متن کامل

The using of Haar wavelets for the expansion of fractional stochastic integrals

Abstract: In this paper, an efficient method based on Haar wavelets is proposed for solving fractional stochastic integrals with Hurst parameter. Properties of Haar wavelets are described. Also, the error analysis of the proposed method is investigated. Some numerical examples are provided to illustrate the computational efficiency and accuracy of the method.  

متن کامل

Robust estimation of the Hurst parameter and selection of an onset scaling

We consider the problem of estimating the Hurst parameter for long-range dependent processes using wavelets. Wavelet techniques have shown to effectively exploit the asymptotic linear relationship that forms the basis of constructing an estimator. However, it has been noticed that the commonly adopted standard wavelet estimator is vulnerable to various non-stationary phenomena that increasingly...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010